Open Science, or Internet Fight?

Quantum theory is the most accurate and well tested theory ever. However, it is difficult to understand without the proper mathematical background, and challenges common intuition. This makes it a target for crackpot attacks.

Scott Aaronson has gotten into a fight in his blog with the quantum denialist Joy Christian. This fight has many of the usual ingredients: angry comments, dares, misconceptions, made-up language, etc. War was declared in this post by Scott, and attacks were made in the comments to that post. This prompted Scott to follow up with a second post that is even more interesting. What makes it stand out is that 1) there is a $200,000 in line, 2) Scott has been gracious enough to study Joy’s papers, and find a central, basic and quite obvious mistake that makes the whole argument fall apart, and 3) Scott is asking for FQXi, Perimeter Institute and Oxford to cut all connections to Joy!

This has caused another debate in the comments section of the second post. Is this feeding the troll? Is this going to far? Isn’t this empowering Joy Christian more, instead of deflating him? Why pick on him, instead of any of the other quantum deniers? Even people from FQXi have posted in the blog.

Is this just another internet fight? Is this an example of what Neal Stephenson wrote in Cryptonomicon:

Arguing […] on the Internet is a sucker’s game because they almost always turn out […] to be indistinguishable from—self-righteous sixteen-year-olds possessing infinite amounts of free time.

Or is this how open science should be? After all, it does bring attention to unpublished work, focuses examination by leading researchers, and gets quick results. Just because the result invalidates the idea, was it wasted time and resources, or was it part of how open science should be done?

Is there a code of conduct for Open Science to differentiate between internet fights and good science?

Pretty Lazy

I had written before about the concept of Lazy States.  Questions in non-equilibrium thermodynamics are usually said to be intractable, due to how much they depend on the details of the dynamical equations. We discovered that in quantum non-equilibrium thermodynamics, there was a simple way to separate the role of system-environment states and of the details of their Hamiltonian coupling. For a class of states, $$left[rho^{SE},rho^{S} right]=0$$ , Lazy States, the entropy rate is always zero independent of the interaction Hamiltonian. These Lazy States are rare, which opens the question of how come thermodynamic equilibrium is so common in the universe?

On a new paper in the arXiv titled Almost all states are pretty lazy, Adrian Hutter and Stephanie Wehner, from the Centre for Quantum Technologies in Singapore, tackled exactly this problem. They were able to show that even if states aren’t lazy, almost all states lead to dynamics which is very close to the ones generated by lazy states. Thus, even if systems are away from equilibrium, they cannot be too far away from it. This leads them to conclude that “Almost all states are pretty lazy”.

Physics Journals learning from Open Science

It is good to see some of the biggest names in physics journals embrace ideas pioneered by the open sciences community.

I hope they push further! Any comments of future directions you would like them to take?

Theorem: Consider the set of all sets that have never been considered. Hey! They’re all gone! Oh, well, never mind…

Andy Maloney’s Open Science Biophysics Dissertation

Andy Maloney, a leader in open science, is embracing the open philosophy all the way. He has decided to write his dissertation as it evolves as an open science document. First chapter draft is here. Go there to witness the first fully open dissertation ever.

Yes, every version, every draft, every correction, everything will be posted there. Members of the wiki can also write him comments and suggestions. This is a fantastic idea, as this is the first time others can see how  a dissertations actually develops. This will help both experts in the field, and graduate students that want to see how is the dissertation-writing process.

[Jesus walks out of the lake with a small bottle of lemonade]
Jesus Christ: Lemonade?
Father Eustace: Will there be enough?
Jesus Christ: Oh, there’ll be plenty.
-Jesus Christ Vampire Hunter

Open Science leads to a Quantum Theory Paper!

My friend and collaborator Kavan Modi had been posting on his blog his musings about Linear Assignments Maps, Correlations and Not-Completely Positive Maps. His original posts can be found here:

This was an experiment testing the possibilities of doing Open Science in theoretical research. It helped us to publicly discuss the issues, and after some discussion face to face, and private discussions using Google Wave (and the watexy robot for equations) we posted a paper in the arXiv!

Linear Assignment Maps for Correlated System-Environment States

An assignment map is a mathematical operator that describes initial system-environment states for open quantum systems. We reexamine the notion of assignments, introduced by Pechukas, and show the conditions assignments can account for correlations between the system and the environment, concluding that assignment maps can be made linear at the expense of positivity or consistency is more reasonable. We study the role of other conditions, such as consistency and positivity of the map, and show the effects of relaxing these. Finally, we establish a connection between the violation of positivity of linear assignments and the no-broadcasting theorem.

Very promptly, the paper was accepted for publication on Physical Review A, and should appear in the journal in a few weeks.

I’ll comment on my experiences of this clumsy and incomplete Open Science and remote collaboration attempt soon, hoping that the Open Science community will give me ideas of how to streamline this process.


When a reporter asked Asher [Asher Peres] if quantum teleportation could teleport the soul as well as the body, Asher answered, characteristically, “No, not the body, just the soul.”